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Abstract
We show that a new integrable two-component system of KdV type studied by
Karasu (Kalkanlı) et al (2004 Acta Appl. Math. 83 85–94) is bi-Hamiltonian,
and its recursion operator, which has a highly unusual structure of nonlocal
terms, can be written as a ratio of two compatible Hamiltonian operators found
by us. Using this we prove that the system in question possesses an infinite
hierarchy of local commuting generalized symmetries and conserved quantities
in involution, and the evolution systems corresponding to these symmetries are
bi-Hamiltonian as well. We also show that upon introduction of suitable
nonlocal variables the nonlocal terms of the recursion operator under study can
be written in the usual form, with the integration operator D−1

x appearing in
each term at most once.

PACS number: 02.30.Ik
Mathematics Subject Classification: 37K05, 37K10

Using the Panilevé test, Karasu (Kalkanlı) [1] and Sakovich [2] found a new integrable
evolution system of KdV type,

ut = 4uxxx − vxxx − 12uux + vux + 2uvx,

vt = 9uxxx − 2vxxx − 12vux − 6uvx + 4vvx,
(1)

and a zero-curvature representation for it [2]. Note that this system is, up to a linear
transformation of u and v, equivalent to the system (16) from Foursov’s [3] list of two-
component evolution systems of KdV-type possessing (homogeneous) symmetries of order
k, 4 � k � 9.

Karasu (Kalkanlı), Karasu and Sakovich [4] found that (1) has a recursion operator of the
form

R =
(

R11 R12

R21 R22

)
,
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where

R11 = 3D2
x − 6u − 3uxD

−1
x ,

R12 = [−2D5
x + (2u + 3v)D3

x + (8vx − 4ux)D
2
x + (7vxx − 6uxx + 4u2 − 6uv)Dx − 2uxxx

+ 2vxxx + 6uux − 3vux − 4uvx +uxD
−1
x ◦ vx

] ◦ (
3D3

x − 4vDx − 2vx

)−1
,

R21 = 6D2
x + 6u − 9v − 3vxD

−1
x ,

R22 = [−3D5
x + (12v − 18u)D3

x + (18vx − 27ux)D
2
x + (14vxx − 21uxx

+ 12(u2 + uv) − 9v2)Dx − 6uxxx + 4vxxx + 12uux + 6(vux + uvx)

− 9vvx + vxD
−1
x ◦ vx

] ◦ (
3D3

x − 4vDx − 2vx

)−1
.

Here Dx is the operator of total x-derivative:

Dx = ∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+

∞∑
j=2

(
ujx

∂

∂u(j−1)x

+ vjx

∂

∂v(j−1)x

)
,

ukx ≡ ∂ku/∂xk , and vkx ≡ ∂kv/∂xk , see e.g. [5, 6] for further details.
Define also the variational derivatives with respect to u and v [5, 6]:

δ

δu
= ∂

∂u
+

∞∑
j=1

(−Dx)
j ∂

∂ujx

,
δ

δv
= ∂

∂v
+

∞∑
j=1

(−Dx)
j ∂

∂vjx

.

We shall use the notation u = (u, v)T , ujx = (ujx, vjx)
T and δ/δu = (δ/δu, δ/δv)T . Here

and below the superscript T denotes the matrix transposition. Recall that a function that
depends on x, t, u and a finite number of ujx is said to be local, see e.g. [5, 6].

Because of the nonstandard structure of nonlocal terms in R the known ‘direct’ methods
(see e.g. [7–10] and references therein) for proving the locality of symmetries generated by R

are not applicable, so the question of whether (1) has an infinite hierarchy of local commuting
symmetries remained open for a while. It was also unknown whether (1) is a bi-Hamiltonian
system.

We have [4] R = M ◦ N−1, where M and N are some (non-Hamiltonian) differential
operators of orders 5 and 3. Inspired by this fact, we undertook a search of Hamiltonian
operators of orders 3 and 5 for (1), and it turned out that such operators do exist and (1) is
bi-Hamiltonian. Namely, the following assertion holds.

Proposition 1. The system (1) is bi-Hamiltonian:

ut = P1δH0/δu = P0δH1/δu,

where H0 = −3u + v/2,H1 = 2u2 − uv + v2/9, and P0 and P1 are compatible Hamiltonian
operators of the form

P0 =
(

D3
x − 2uDx − ux 0

0 −9D3
x + 12vDx + 6vx

)
, P1 =

(
P11 P12

P21 P22

)
,

where

P11 =D5
x − 4uD3

x − 6uxD
2
x + 4(u2 − uxx)Dx − uxxx + 4uux − uxD

−1
x ◦ ux,

P12 = 2D5
x − (2u + 3v)D3

x + 4(ux − 2vx)D
2
x + (6uxx − 7vxx − 4u2 + 6uv)Dx

+ 2uxxx − 2vxxx − 6uux + 3vux + 4uvx − uxD
−1
x ◦ vx,

P21 = 2D5
x − (2u + 3v)D3

x − (10ux + vx)D
2
x + (−4u2 + 6uv − 8uxx)Dx

− 2uxxx − 2uux + 3vux + 2uvx − vxD
−1
x ◦ ux,

P22 = 3D5
x + (18u− 12v)D3

x + (27ux − 18vx)D
2
x + (21uxx − 14vxx − 12u2 − 12uv + 9v2)Dx

+ 6uxxx − 4vxxx − 12uux − 6vux − 6uvx + 9vvx − vxD
−1
x ◦ vx.
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Moreover, we have R = 3P1 ◦ P
−1
0 , and hence R is hereditary.

Now we are ready to prove that (1) has infinitely many local commuting symmetries.

Proposition 2. Define the quantities Qj and Hj recursively by the formula Qj =
P1δHj/δu = P0δHj+1/δu, j = 0, 1, 2, . . . , where H0,H1,P0 and P1 are given in
proposition 1. Then Hj, j = 2, 3, . . . , are local functions that can be chosen to be independent
of x and t, and Qj , j = 0, 1, 2, . . . , are local commuting generalized symmetries for (1).

Thus, the evolution systems utj = Qj , j = 0, 1, 2, . . . , are bi-Hamiltonian with respect
to P0 and P1, and Hj = ∫

Hj dx are in involution with respect to the Poisson brackets
associated with P0 and P1 for all j = 0, 1, 2 . . . , so Hj are common conserved quantities for
all evolution systems utk = Qk, k = 0, 1, 2, . . . .

Proof. Let us use induction on j . Assume that Qj = P1δHj/δu is local and there exists a
local function Hj+1 such that Qj = P0δHj+1/δu and ∂Hj+1/∂x = ∂Hj+1/∂t = 0, and let us
show that then Qj+1 = P1δHj+1/δu is local too and there exists a local function Hj+2 such
that Qj+1 = P0δHj+2/δu and ∂Hj+2/∂x = ∂Hj+2/∂t = 0.

The only possibly nonlocal term in Qj+1 = P1δHj+1/δu is −uxD
−1
x (uxδHj+1/δu +

vxδHj+1/δv). But since Hj+1 is independent of x by assumption, we have

ux

δHj+1

δu
+ vx

δHj+1

δv
≡ ux · δHj+1

δu
= Dx

(
Hj+1 −

∞∑
m=1

m−1∑
k=0

u(m−k)x · (−Dx)
k

(
∂Hj+1

∂umx

))
, (2)

where ‘·’ stands for the scalar product of two vectors. Note that the sum in (2) is
actually finite, as Hj+1 is local by assumption. The kernel of Dx in the space of local
functions is exhausted by the functions of t alone [5], so we have D−1

x (ux · δHj+1/δu) =
cj (t) + Hj+1 − ∑∞

m=1

∑m−1
k=0 u(m−k)x · (−Dx)

k(∂Hj+1/∂umx), where cj (t) is an arbitrary
function of t. Thus, D−1

x (ux · δHj+1/δu) is local, and so is Qj+1 = P1δHj+1/δu.
Next, as Qj+1 = P1δHj+1/δu, Qj = P0δHj+1/δu and R = 3P1 ◦ P

−1
0 , we can

(formally) write Qj+1 = (1/3)R(Qj ), cf e.g. section 7.3 of [5]. As R is a recursion operator
for (1), its Lie derivative along Q0 vanishes: LQ0(R) = 0. Moreover, by proposition 1 the
operator R is hereditary, so [11] LQj+1(R) = (1/3)j+1LRj+1Q0(R) = (1/3)j+1Rj+1LQ0(R) =
0. Hence LQj+1(P0) = 3LQj+1(R

−1◦P1) = 3R−1 ◦ LQj+1(P1) = 3R−1 ◦ LP1δHj+1/δu(P1) =
0, cf e.g. [12]. In turn, LQj+1(P0) = 0 implies that there exists a local function Hj+2 such
that Qj+1 = P0δHj+2/δu. This is proved along the same lines as in [13] for the second
Hamiltonian structure of the KdV equation.

Finally, as the coefficients of P0 and P1 are independent of x and t, it is immediate
that we always can choose Hj+2 so that it is independent of x and t. The commutativity
of Qj = (1/3)jRj (Q0), j = 0, 1, 2, . . . , readily follows from LQ0(R) = 0 and R being
hereditary, see e.g. theorem 3.12 of [12]. The induction on j starting from j = 0 completes
the proof. �

For any local H such that ∂H/∂x = 0 we shall set, in agreement with (2) (see e.g. [14–17]
for more details on dealing with nonlocalities),

D−1
x

(
ux

δH

δu
+ vx

δH

δv

)
= H −

∞∑
j=1

j−1∑
k=0

u(j−k)x · (−Dx)
k

(
∂H

∂ujx

)
.
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Then, for instance, the first commuting flow for (1) reads

ut1 = 2u5x − 5

9
v5x − 20uuxxx +

50

9
uvxxx +

40

9
vuxxx − 10

9
vvxxx − 50uxuxx +

125

9
uxvxx

+
40

3
vxuxx − 10

3
vxvxx − 40

3
vuux +

20

9
vuvx + 40u2ux − 80

9
u2vx +

5

9
v2ux,

vt1 = 5u5x − 4

3
v5x − 40uuxxx + 10uvxxx +

10

3
vuxxx − 5

9
vvxxx − 120uxuxx + 30uxvxx

+
80

3
vxuxx − 55

9
vxvxx +

160

3
vuux − 20vuvx +

40

3
u2vx − 40

3
v2ux +

35

9
v2vx.

By proposition 2 this system is bi-Hamiltonian, and indeed we can write it as

ut1 = P1δH1/δu = P0δH2/δu,

where H2 = 7
162v3 − 8

3u3 − 5
9v2u + 20

9 u2v − u2
x + 5

9vxux − 2
27v2

x .
Following the general procedure described in [18], we can rewrite R in the standard form,

with D−1
x appearing in each term at most once. To this end we define nonlocal variables

w, y, z by means of the formulae

wx = y, wt = − 2
3wvx + 3wux + 4

3yv − 6yu,

yx = 1
3wv, yt = 2

3yvx − 3yux + 4
9wv2 − 2wvu − 2

3wvxx + 3wuxx,

zx = 1/w2, zt = − 2
3 (−2v + 9u)/w2.

Note that the variable w above is essentially the same as in [4], and we have the following
factorization [4]:(

3D3
x − 4vDx − 2vx

)−1 = 1
3w2 ◦ D−1

x ◦ w−2 ◦ D−1
x ◦ w−2 ◦ D−1

x ◦ w2.

Moreover, as

D−1
x ◦ w−2 = z − D−1

x ◦ z ◦ Dx,

we find that(
3D3

x − 4vDx − 2vx

)−1 = 1
6w2 ◦ (

z2 ◦ D−1
x ◦ w2 + D−1

x ◦ z2w2 − 2z ◦ D−1
x ◦ w2z

)
.

Using the above formulae we can rewrite R as follows:

R =
(

3 −2/3
6 −1

)
D2

x +

( −6u v/9 + 2u/3
6u − 9v 8v/3 − 6u

)
+

4∑
α=1

KαD−1
x ◦ γα.

Here γ1 = (−3, 1/2) is a local cosymmetry for (1), γα = (0, w2zα−2), α = 2, 3, 4, are
nonlocal cosymmetries for (1), see e.g. [12] for the definition of cosymmetry; K1 = (ux, vx)

T

is a local symmetry of (1), and Kα, α = 2, 3, 4, are nonlocal symmetries of (1) of the form

K2 =
(

w2z2

27
(3vxxx − 9uxxx + 27uux − 21vux − 12uvx + 5vvx) +

wyz2

27
(15vxx − 54uxx

+ 36u2 − 30uv + 4v2) +
z

54
(−108uxx + 30vxx − 99y2zux + 24y2zvx + 72u2

− 60uv + 8v2) +
zy

9w
(−33ux + 8vx) +

(4

9
vx − 11

6
ux

)
w−2,−w2z2

9
(9uxxx

− 3vxxx − 18(u − v)ux + 9uvx − 4vvx) +
wyz2

9
(18vxx − 63uxx + 36u2
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− 36uv + 5v2) +
z

18
(36vxx − 126uxx + y2z(39vx − 162ux) + 72(u2 − uv)

+ 10v2) +
zy

3w
(−54ux + 13vx) +

(13

6
vx − 9ux

)
w−2

)T

,

K3 =
(

2w2z

27
(9uxxx − 3vxxx − 27uux + 21vux + 12uvx − 5vvx) + 2uxx − 5

9
vxx

− 2wyz

27
(15vxx − 54uxx + 36u2 − 30uv + 4v2) +

(
y2z +

y

w

)(11

3
ux − 8

9
vx

)

− 4u2

3
+

10uv

9
− 4v2

27
,

2w2z

9
(9uxxx − 3vxxx − 18(u − v)ux + 9uvx − 4vvx)

+ 7uxx − 2vxx − 2wyz

9
(18vxx − 63uxx + 36u2 − 36uv + 5v2) + 18y2zux

− 13

3
y2zvx − y

3w
(−54ux + 13vx) − 4u2 + 4uv − 5

9
v2

)T

,

K4 =
((

1

9
vxxx− 1

3
uxxx + uux − 7

9
vux − 4

9
uvx +

5

27
vvx

)
w2 +

wy

27
(−54uxx + 15vxx + 36u2

− 30uv + 4v2) +
y2

18
(−33ux + 8vx),

(
−uxxx +

1

3
vxxx + 2uux − 2vux − uvx

+
4

9
vvx

)
w2 +

wy

9
(18vxx− 63uxx + 36(u2 − uv) + 5v2) +

y2

6
(−54ux + 13vx)

)T

.

It would be interesting to investigate the properties of nonlocal symmetries Qα,j ≡
Rj (Kα), j = 1, 2, . . . , α = 2, 3, 4, and in particular to find out whether the commutators
of Qα,j with local symmetries Qk from proposition 2 yield any new symmetries for (1). We
intend to address these and related issues elsewhere.
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